您好,欢迎访问光刻加工,纳米压印,微纳结构-无锡鼎元纳米科技有限公司官网!

首 页 >> 新闻中心 >> 公司新闻

公司新闻

产品分类

联系我们

企业名称:

联系人:

电话:

手机:

邮箱:

传真:

地址:

网址 :  www.micro-graph.com.cn   

中国VS国外!光刻工艺差别在哪?

您的当前位置: 首 页 >> 新闻中心 >> 公司新闻

中国VS国外!光刻工艺差别在哪?

发布日期:2019-07-24 作者: 点击:

作为制造芯片的核心装备,光刻机一直是中国的技术弱项,其技术水平严重制约着中国芯片技术的发展。荷兰ASML公司的光刻机设备处于世界先进水平,日本光刻设备大厂都逐渐被边缘化,国内更是还有很大的差距。那么中国光刻工艺与国外好的公司究然相差多少代技术呢?


半导体制造工艺复杂,制造一颗芯片要经过很多的工序,每一个工序都有核心的技术,光刻也是其中之一,光刻机是半导体产业中重要的设备。芯片制造可以用点石成金来形容,从很初的硅晶片到芯片价值可以翻12倍。当原材料加工成晶圆后,将感光材料覆盖在晶圆上,利用光刻机光线的反射将复杂的电路图复制到感光材料上,再用刻蚀机将暴露出来多余的硅片刻蚀掉。经过离子注入其它复杂的工艺便有了半导体的特性,很后进行测试,分割,封装完成成品芯片。这些流程中,光刻机起到了很重要的作用。


以便大家更直观地了解光刻,我们再以日常生活中的常见事物为例:LED灯是节能环保的绿色能源,它正是利用光刻机加工出的微纳结构(P、N结)实现发光;电视、手机、电脑之所以能够显示各种图像,是源于光刻机在面板内部加工出每个像素对应的多种微纳结构;计算机更是光刻技术的集中体现,CPU、内存、主板、显卡等都是光刻加工的产物,正是得益于光刻机技术的进步(很小加工尺寸减小),使得我们的CPU越来越快、内存越来越大;汽车之所以知道空调温度、an全带是否系紧、车门是否关好、当前车速、油量等等信息,正是源于利用光刻技术所加工的各种微型传感器;机器人之所以能够完成各种复杂动作,也是利用光刻机所加工的各种控制芯片、传感器,实现运动控制;利用光刻机加工的纳米微针,能够实现无痛注射,减轻病人痛苦……光刻机的应用在现代生活中不胜枚举。


作为制造芯片的核心装备,光刻机一直是中国的技术弱项,其技术水平严重制约着中国芯片技术的发展。荷兰ASML公司的光刻机设备处于世界先进水平,日本光刻设备大厂(如佳能和尼康)都逐渐被边缘化,国内更是还有很大的差距,目前光刻机设备82%的市场都被荷兰ASML公司垄断,很先进7nm、5nm工艺的光刻机设备也只有ASML公司制造,我国也有在研发生产光刻机,但技术水平还比较落后,无法满足现代芯片工艺要求。


中国的光刻机研制在70年代后期起步,初期型号为接触式或接近式光刻机,85年完成一台分步光刻机,此后技术一直在推进。


1977年,我国很早的光刻机GK-3型半自动光刻机诞生,JKG-3型光刻机是当时国内较先进的制造中大规模集成电路的光刻设备,这是一台接触式光刻机。(吴先升.φ75毫米圆片半自动光刻机[J].半导体设备,1979(04):24-28.)


1978年,1445所在GK-3的基础上开发了GK-4,把加工圆片直径从50毫米提好到75毫米,自动化程度有所提好,但同样是接触式光刻机。


同期,中科院半导体所开始研制JK-1型半自动接近式光刻机,于1981年研制成功两台样机。


而USA在20世纪50年代就已经拥有了接触式光刻机,期间相差了二十几年。此时的光刻机巨头ASML还没有出现(1984年,ASML才诞生),日本的尼康和佳能已于60年代末开始进入这个领域。


1979年,机电部45所开展了分步光刻机的研制,对标的是USA的4800DSW。1985年,研制出了样机,通过电子部技术鉴定,认为达到4800DSW的水平。如果资料没有错误,这应当是中国一台分步投影式光刻机,采用的是436纳米G线光源(周得时.为研制我国自己的分步光刻机(DSW)而拼搏[J].电子工业专用设备,1991(03):30-38.)。按照这个时间节点算,中国在分步光刻机上与国外的差距不超过7年(USA是1978年)。


1990年3月,中科院光电所研制的IOE1010G直接分步重复投影光刻机样机通过评议,工作分辨率1.25微米,主要技术指标接受USAGCA8000型的水平,相当于国外80年代中期水平。


一国在2000年前后启动了193纳米ArF光刻机项目。而ASML已经开始EUV光刻机的研发工作,并于2010年研发出一台EUV原型机,由三星、台积电、英特尔共同入股推动研发。这足足落后ASML 20多年。


一台“分辨力很好”真能打破世界垄断局面?


在去年年底,11月29日,由中国科学院光电技术研究所承担的超分辨光刻装备项目在成都通过验收,作为项目重要成果之一,中国科学家研制成功世界上首台分辨力很好的紫外超分辨光刻装备,并形成一条全新的纳米光学光刻工艺路线,具有全部自主知识产权。据介绍,该项目组经过近7年攻关,突破多项关键技术,完成世界上首台分辨力很好的紫外超分辨光刻装备研制,单次曝光很好线宽分辨力达到22纳米。22纳米的光刻机可以刻出来10纳米的芯片。因为紫外光很小十纳米,所以说十纳米以下都得用多重曝光。——“结合双重曝光技术后,未来还可用于制造10纳米级别的芯片”。


超分辨光刻装备项目的顺利实施,打破了国外在好端光刻装备领域的垄断,为纳米光学加工提供了全新的解决途径,也为新一代信息技术、新材料、生物医疗等先进战略技术领域,基础前沿和国防an全提供了核心技术保障。


项目副总设计师、中科院光电技术研究所研究员胡松介绍:“一个首先表现于我们现在的水平和世界上已经可以达到持一致的水平。分辨率的指标实际上也是属于国外禁运的一个指标,我们这项目出来之后对打破禁运有很大的帮助。”


“二个如果国外禁运我们也不用怕,因为我们这个技术再走下去,我们认为可以有保证。在芯片未来发展、下一代光机电集成芯片或者我们说的广义芯片(研制领域),有可能弯道超车走在更前面。”


然而,事实上真的如此吗?连日本设备大厂都逐渐被边缘化的光刻机技术,真的被“7 年”磨一剑的中科院光电追赶上了吗?答案:肯定不是真的。


世界上首台分辨力很好的紫外超分辨光刻装备的出现,并不意味着中国的芯片制造立刻就能突飞猛进。中科院光电所的这台光刻机还有肯定的局限,据介绍,目前这个装备已制备出一系列纳米功能器件,包括大口径薄膜镜、超导纳米线单光子探测器、切伦科夫辐射器件、生化传感芯片、超表面成像器件等,验证了该装备纳米功能器件加工能力,已达到实用化水平。


也就是说,目前该装备主要适合生产制造一些光学等领域的器件。其工业之路仍有较长一段路要走。这台“超分辨光刻”装备只可应用在小批量、小视场(几平方毫米)、工艺层少且套刻精度低、低成品率、小基片尺寸(4英寸以下)且产率低(每小时几片)的一些特殊纳米器件加工。但是在看到其线宽分辨率优势的同时,同样需要看到与主流商用的ArF浸没式投影光刻机相比,其在视场、成品率、套刻精度及产率上的不同。所以其工业之路还比较坎坷。


有网友表示,以目前的技术能力,这台设备只能做周期的线条和点阵,是无法制作复杂的IC需要的图形的。所以,无法撼动ASML在IC制造领域分毫的地位。

光刻技术的原理

本文网址:http://www.micro-graph.com.cn/news/406.html

关键词:光刻技术概述,光刻技术的原理,光刻技术哪家好

最近浏览:

  • 在线客服
  • 联系电话
    18013801415
  • 在线留言
  • 在线咨询
    欢迎给我们留言
    请在此输入留言内容,我们会尽快与您联系。
    姓名
    联系人
    电话
    座机/手机号码
    邮箱
    邮箱
    地址
    地址